ROC curve estimation under test-result-dependent sampling.
نویسندگان
چکیده
The receiver operating characteristic (ROC) curve is often used to evaluate the performance of a biomarker measured on continuous scale to predict the disease status or a clinical condition. Motivated by the need for novel study designs with better estimation efficiency and reduced study cost, we consider a biased sampling scheme that consists of a SRC and a supplemental TDC. Using this approach, investigators can oversample or undersample subjects falling into certain regions of the biomarker measure, yielding improved precision for the estimation of the ROC curve with a fixed sample size. Test-result-dependent sampling will introduce bias in estimating the predictive accuracy of the biomarker if standard ROC estimation methods are used. In this article, we discuss three approaches for analyzing data of a test-result-dependent structure with a special focus on the empirical likelihood method. We establish asymptotic properties of the empirical likelihood estimators for covariate-specific ROC curves and covariate-independent ROC curves and give their corresponding variance estimators. Simulation studies show that the empirical likelihood method yields good properties and is more efficient than alternative methods. Recommendations on number of regions, cutoff points, and subject allocation is made based on the simulation results. The proposed methods are illustrated with a data example based on an ongoing lung cancer clinical trial.
منابع مشابه
Nonparametric Estimation of AUC and Partial AUC under Test-Result-Dependent Sampling
The area under a ROC curve (AUC) and partial area under a ROC curve (pAUC) are important summary measures useful in assessing the accuracy of a diagnostic test or a biomarker in discriminating true disease status. We consider nonparametric estimation of AUC and pAUC under a test-result-dependent sampling (TDS) design, which consists of a simple random component and a test-result-dependent compo...
متن کاملBayesian ROC curve estimation under verification bias.
Receiver operating characteristic (ROC) curve has been widely used in medical science for its ability to measure the accuracy of diagnostic tests under the gold standard. However, in a complicated medical practice, a gold standard test can be invasive, expensive, and its result may not always be available for all the subjects under study. Thus, a gold standard test is implemented only when it i...
متن کاملA Semi-parametric Approach to Estimation of ROC Curves for Multivariate Binormal Mixtures
A Receiver Operating Characteristic (ROC) curve reflects the performance of a system which decides between two competing actions in a test of statistical hypothesis. This paper addresses the inference on ROC curves for the following problem: how can one statistically validate the performance of a system with a claimed ROC curve, ROC0 say? Our proposed solution consists of two main components: F...
متن کاملBayesian bootstrap estimation of ROC curve.
Receiver operating characteristic (ROC) curve is widely applied in measuring discriminatory ability of diagnostic or prognostic tests. This makes the ROC analysis one of the most active research areas in medical statistics. Many parametric and semiparametric estimation methods have been proposed for estimating the ROC curve and its functionals. In this paper, we propose the Bayesian bootstrap (...
متن کاملNon-parametric estimation of ROC curve
Receiver operating characteristic (ROC) curve is widely applied in measuring discriminatory ability of diagnostic or prognostic tests. This makes ROC analysis one of the most active research areas in medical statistics. Many parametric and semiparametric estimation methods have been proposed for estimating the ROC curve and its functionals. In this paper, we propose a fully nonparametric Bayesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biostatistics
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2013